1. (a) Let u and v be two nilpotent elements in a commutative ring (with or without unity). Prove that $u+v$ is also nilpotent. (An element u is called nilpotent if there exists a positive integer n for which $u^{n}=0$.)
(b) Show an example of a (non-commutative) ring R and nilpotent elements $u, v \in R$ such that $u+v$ is not nilpotent.
2. Let (G, \cdot) be a finite group of order n. Show that each element of G is a square if and only if n is odd.
3. Given real numbers $0=x_{1}<x_{2}<\cdots<x_{2 n}<x_{2 n+1}=1$ such that $x_{i+1}-x_{i} \leq h$ for $1 \leq i \leq 2 n$, show that

$$
\frac{1-h}{2}<\sum_{i=1}^{n} x_{2 i}\left(x_{2 i+1}-x_{2 i-1}\right)<\frac{1+h}{2} .
$$

4. Suppose that $\left(a_{n}\right)$ is a sequence of real numbers such that the series

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n}
$$

is convergent. Show that the sequence

$$
b_{n}=\frac{\sum_{j=1}^{n} a_{j}}{n}
$$

is convergent and find its limit.
5. Two players play the following game: Let n be a fixed integer greater than 1 . Starting from number $k=2$, each player has two possible moves: either replace the number k by $k+1$ or by $2 k$. The player who is forced to write a number greater than n loses the game. Which player has a winning strategy for which n ?
6. Let $A=\left[a_{i j}\right]_{n \times n}$ be a matrix with nonnegative entries such that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}=n
$$

(a) Prove that $|\operatorname{det} A| \leq 1$.
(b) If $|\operatorname{det} A|=1$ and $\lambda \in \mathbb{C}$ is an arbitrary eigenvalue of A, show that $|\lambda|=1$.
(We call $\lambda \in \mathbb{C}$ an eigenvalue of A if there exists a non-zero vector $x \in \mathbb{C}^{n}$ such that $A x=\lambda x$.)
7. For a function $f:[0,1] \rightarrow \mathbb{R}$ the secant of f at points $a, b \in[0,1], a<b$, is the line in \mathbb{R}^{2} passing through $(a, f(a))$ and $(b, f(b))$. A function is said to intersect its secant at a, b if there exists a point $c \in(a, b)$ such that $(c, f(c))$ lies on the secant of f at a, b.

1. Find the set \mathcal{F} of all continuous functions f such that for any $a, b \in[0,1], a<b$, the function f interescts its secant at a, b.
2. Does there exist a continuous function $f \notin \mathcal{F}$ such that for any rational $a, b \in[0,1], a<b$, the function f intersects its secant at a, b ?
3. Bizonyítsuk be, hogy minden $c<e$ számhoz léteznek olyan a_{1}, a_{2}, \ldots nemnegatív számok, hogy bármely $1=n_{0}<n_{1}<n_{2}<\ldots$ indexekre

$$
\sum_{i=0}^{\infty} n_{i+1} a_{n_{i}}>c \sum_{n=1}^{\infty} a_{n} .
$$

9. (Írásban, angolul beadható.) Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a strictly convex continuous function such that

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=+\infty
$$

Prove that the improper integral $\int_{0}^{+\infty} \sin (f(x)) \mathrm{d} x$ is convergent but not absolutely convergent.

