1. Suppose that $f$ and $g$ are real-valued functions on the real line and $f(r) \leq g(r)$ for every rational $r$.

Does this imply that $f(x) \leq g(x)$ for every real $x$ if
a) $f$ and $g$ are non-decreasing?
b) $f$ and $g$ are continuous?
2. Let $\ell$ be a line and $P$ a point in $\mathbb{R}^{3}$. Let $S$ be the set of points $X$ such that the distance from $X$ to $\ell$ is greater than or equal to two times the distance between $X$ and $P$. If the distance from $P$ to $\ell$ is $d>0$, find the volume of $S$.
3. Let $A, B$ and $C$ be real square matrices of the same size, and suppose that $A$ is invertible. Prove that if $(A-B) C=B A^{-1}$, then $C(A-B)=A^{-1} B$.
4. In a town every two residents who are not friends have a friend in common, and no one is a friend of everyone else. Let us number the residents from 1 to $n$ and let $a_{i}$ be the number of friends of the $i$-th resident. Suppose that $\sum_{i=1}^{n} a_{i}^{2}=n^{2}-n$. Let $k$ be the smallest number of residents (at least three) who can be seated at a round table in such a way that any two neighbors are friends. Determine all possible values of $k$.
5. Let $A$ and $B$ be two complex square matrices such that

$$
A^{2} B+B A^{2}=2 A B A
$$

Prove that there exists a positive integer $k$ such that $(A B-B A)^{k}=0$.
6. Let $p$ be a prime number and $\mathbb{F}_{p}$ be the field of residues modulo $p$. Let $W$ be the smallest set of polynomials with coefficients in $\mathbb{F}_{p}$ such that

- the polynomials $x+1$ and $x^{p-2}+x^{p-3}+\cdots+x^{2}+2 x+1$ are in $W$, and
- for any polynomials $h_{1}(x)$ and $h_{2}(x)$ in $W$ the polynomial $r(x)$, which is the remainder of $h_{1}\left(h_{2}(x)\right)$ modulo $x^{p}-x$, is also in $W$.

How many polynomials are there in $W$ ?
7. Let $n$ be a positive integer. An $n$-simplex in $\mathbb{R}^{n}$ is given by $n+1$ points $P_{0}, P_{1}, \ldots, P_{n}$, called its vertices, which do not all belong to the same hyperplane. For every $n$-simplex $S$ we denote by $v(S)$ the volume of $S$, and we write $C(S)$ for the center of the unique sphere containing all the vertices of $S$.

Suppose that $P$ is a point inside an $n$-simplex $S$. Let $S_{i}$ be the $n$-simplex obtained from $S$ by replacing its $i$-th vertex by $P$. Prove that

$$
v\left(S_{0}\right) C\left(S_{0}\right)+v\left(S_{1}\right) C\left(S_{1}\right)+\cdots+v\left(S_{n}\right) C\left(S_{n}\right)=v(S) C(S)
$$

8. (Írásban, angolul beadható.) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a two times differentiable function satisfying $f(0)=1, f^{\prime}(0)=0$, and for all $x \in[0, \infty)$

$$
f^{\prime \prime}(x)-5 f^{\prime}(x)+6 f(x) \geq 0
$$

Prove that for all $x \in[0, \infty)$

$$
f(x) \geq 3 e^{2 x}-2 e^{3 x}
$$

